Host Adaptation of Chlamydia pecorum towards Low Virulence Evident in Co-Evolution of the ompA, incA, and ORF663 Loci
نویسندگان
چکیده
Chlamydia (C.) pecorum, an obligate intracellular bacterium, may cause severe diseases in ruminants, swine and koalas, although asymptomatic infections are the norm. Recently, we identified genetic polymorphisms in the ompA, incA and ORF663 genes that potentially differentiate between high-virulence C. pecorum isolates from diseased animals and low-virulence isolates from asymptomatic animals. Here, we expand these findings by including additional ruminant, swine, and koala strains. Coding tandem repeats (CTRs) at the incA locus encoded a variable number of repeats of APA or AGA amino acid motifs. Addition of any non-APA/AGA repeat motif, such as APEVPA, APAVPA, APE, or APAPE, associated with low virulence (P<10-4), as did a high number of amino acids in all incA CTRs (P = 0.0028). In ORF663, high numbers of 15-mer CTRs correlated with low virulence (P = 0.0001). Correction for ompA phylogram position in ORF663 and incA abolished the correlation between genetic changes and virulence, demonstrating co-evolution of ompA, incA, and ORF663 towards low virulence. Pairwise divergence of ompA, incA, and ORF663 among isolates from healthy animals was significantly higher than among strains isolated from diseased animals (P≤10-5), confirming the longer evolutionary path traversed by low-virulence strains. All three markers combined identified 43 unique strains and 4 pairs of identical strains among all 57 isolates tested, demonstrating the suitability of these markers for epidemiological investigations.
منابع مشابه
Survey on Carrier State of Sheep in Chlamydia pecorum Infection
Over the last 40 years, evidence has accumulated to suggest the ubiquitous presence of infections with intracellular bacteria of the genus Chlamydia in different livestock species. Different methods to clinical specimens substantiated such widespread, but mostly clinically unapparent, presumably low-level infections. In this initial epidemiological study, we addressed the question of chlamydial...
متن کاملIdentification and characterisation of coding tandem repeat variants in incA gene of Chlamydophila pecorum.
Bacteria of the family Chlamydiaceae are obligate intracellular pathogens of human and animals. Chlamydophila pecorum is associated with different pathological conditions in ruminants, swine and koala. To characterize a coding tandem repeat (CTR) identified at the 3' end of incA gene of C. pecorum, 51 strains of different chlamydial species were examined. The CTR were observed in 18 of 18 teste...
متن کاملMolecular characterisation of the Chlamydia pecorum plasmid from porcine, ovine, bovine, and koala strains indicates plasmid-strain co-evolution
Background. Highly stable, evolutionarily conserved, small, non-integrative plasmids are commonly found in members of the Chlamydiaceae and, in some species, these plasmids have been strongly linked to virulence. To date, evidence for such a plasmid in Chlamydia pecorum has been ambiguous. In a recent comparative genomic study of porcine, ovine, bovine, and koala C. pecorum isolates, we identif...
متن کاملDefining species-specific immunodominant B cell epitopes for molecular serology of Chlamydia species.
Urgently needed species-specific enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies against Chlamydia spp. have been elusive due to high cross-reactivity of chlamydial antigens. To identify Chlamydia species-specific B cell epitopes for such assays, we ranked the potential epitopes of immunodominant chlamydial proteins that are polymorphic among all Chlamydia species. H...
متن کاملImmunization of a wild koala population with a recombinant Chlamydia pecorum Major Outer Membrane Protein (MOMP) or Polymorphic Membrane Protein (PMP) based vaccine: New insights into immune response, protection and clearance
We assessed the effects of two different single-dose anti-Chlamydia pecorum (C. pecorum) vaccines (containing either Major Outer Membrane Protein (3MOMP) or Polymorphic Membrane Protein (Pmp) as antigens) on the immune response of a group of wild koalas. Both vaccines elicited a systemic humoral response as seen by the production of anti-chlamydial IgG antibodies in more than 90% of vaccinated ...
متن کامل